Den interne avkastningskursen (IRR) er en kjernekomponent i kapitalbudsjettering og selskapsfinansiering. Bedrifter bruker den for å bestemme hvilken diskonteringsrente som gjør nåverdien av fremtidige kontantstrømmer etter skatt lik startkostnaden for kapitalinvesteringen.
Eller for å si det enklere: Hvilken diskonteringsrente vil føre til at nåverdien av et prosjekt blir $ 0? Hvis en investering vil kreve kapital som kan brukes andre steder, er IRR det laveste avkastningsnivået fra prosjektet som er akseptabelt for å rettferdiggjøre investeringen.
Hvis et prosjekt forventes å ha en IRR som er større enn hastigheten som brukes til å diskontere kontantstrømmene, legger prosjektet til verdi for virksomheten. Hvis IRR er mindre enn diskonteringsrenten, ødelegger den verdien. Avgjørelsesprosessen for å godta eller avvise et prosjekt er kjent som IRR-regelen.
Viktige takeaways
- Den interne avkastningen gjør det mulig å analysere investeringene for lønnsomhet ved å beregne den forventede vekstraten for en investerings avkastning og uttrykkes i prosent. Intern avkastning beregnes slik at nåverdien av en investering gir null og derfor tillater sammenligningen av resultatene til unike investeringer over forskjellige perioder Den interne avkastningens mangler stammer fra antagelsen om at alle fremtidige reinvesteringer vil skje i samme takt som den opprinnelige renten. Endret intern avkastning gjør det mulig å sammenligne fondet når forskjellige renter beregnes for den innledende investeringen og kapitalkostnadene for reinvestering som ofte er forskjellige. Når investeringene har kontantstrømmer som beveger seg opp og ned på forskjellige tider i året, er modellene ovenfor returnere unøyaktige tall, og XIRR-funksjonen innen excel gjør at den interne avkastningskursen kan ta hensyn til de valgte datointervallene og gi et mer nøyaktig resultat.
En fordel med å bruke IRR, som uttrykkes i prosent, er at det normaliserer avkastning: alle forstår hva en 25% -rente betyr, sammenlignet med en hypotetisk dollarekvivalent (slik NPV er uttrykt). Dessverre er det også flere kritiske ulemper med å bruke IRR til å verdsette prosjekter.
Du bør alltid velge prosjekt med den høyeste NPV , ikke nødvendigvis den høyeste IRR, fordi økonomiske resultater måles i dollar. Hvis du står overfor to prosjekter med lignende risikoer, prosjekt A med 25% IRR og prosjekt B med 50% IRR, men prosjekt A har en høyere NPV fordi det er langsiktig, vil du velge prosjekt A.
Det andre store problemet med IRR-analyse er at den forutsetter at du kan fortsette å reinvestere eventuell inkrementell kontantstrøm ved samme IRR, noe som kanskje ikke er mulig. En mer konservativ tilnærming er Modified IRR (MIRR), som forutsetter reinvestering av fremtidige kontantstrømmer til lavere diskonteringsrente.
IRR-formelen
IRR-en kan ikke avledes enkelt. Den eneste måten å beregne det for hånd er gjennom prøving og feiling fordi du prøver å komme frem til hvilken hastighet som gjør at NPV er lik null. Av denne grunn begynner vi med å beregne NPV:
NPV = t = 0∑n (1 + r) tCFt hvor: CFt = netto kontantinnstrømning etter skatt i løpet av en enkelt periode tr = intern avkastning som kan oppnås inalternativ investeringst = tidsperiode kontantstrøm mottas = antall individuelle kontantstrømmer
Eller denne beregningen kan brytes ut av individuelle kontantstrømmer. Formelen for et prosjekt som har et initialt kapitalutlegg og tre kontantstrømmer, følger:
NPV = (1 + r) 0CF0 + (1 + r) 1CF1 + (1 + r) 2CF2 + (1 + r) 3CF3
NPV = (Dagens verdi av forventede fremtidige kontantstrømmer) - (Dagens verdi av investerte kontanter)
Nedbrutt, diskonteres hver periodes kontantstrøm etter skatt på tidspunktet t med noen rente, r . Summen av alle disse diskonterte kontantstrømmer blir deretter utlignet av den innledende investeringen, som tilsvarer dagens NPV. For å finne IRR, må du "reversere ingeniør" hva r kreves, slik at NPV tilsvarer null.
Finansielle kalkulatorer og programvare som Microsoft Excel inneholder spesifikke funksjoner for beregning av IRR. For å bestemme IRR for et gitt prosjekt, må du først estimere det innledende utlegget (kostnaden for kapitalinvestering) og deretter alle påfølgende fremtidige kontantstrømmer. I nesten alle tilfeller er det mer komplisert å komme frem til disse inndatadataene enn den faktiske beregningen som er utført.
Beregning av IRR i Excel
Det er to måter å beregne IRR i Excel:
- Ved å bruke en av de tre innebygde IRR-formleneBrekke ut komponentens kontantstrømmer og beregne hvert trinn individuelt, og deretter bruke disse beregningene som innganger til en IRR-formel - som vi har beskrevet ovenfor, siden IRR er en avledning, er det ingen enkel måte å bryte den ut for hånd
Den andre metoden er å foretrekke fordi økonomisk modellering fungerer best når den er gjennomsiktig, detaljert og enkel å revidere. Problemet med å ha alle beregningene i en formel er at du ikke lett kan se hvilke tall som går hvor, eller hvilke tall som er brukerinnganger eller hardkodet.
Her er et enkelt eksempel på en IRR-analyse med kontantstrømmer som er kjent og konsistente (ett års mellomrom).
Anta at et selskap vurderer lønnsomheten til prosjekt X. Prosjekt X krever $ 250 000 i finansiering og forventes å generere $ 100 000 i kontantstrømmer etter skatt det første året og vokse med $ 50 000 for hvert av de neste fire årene.
Du kan dele ut en plan som følger (klikk på bildet for å utvide):
Den første investeringen er alltid negativ fordi den representerer en utstrømning. Du bruker noe nå og forventer å komme tilbake senere. Hver påfølgende kontantstrøm kan være positiv eller negativ - det avhenger av estimatene for hva prosjektet leverer i fremtiden.
I dette tilfellet er IRR 56, 77%. Gitt forutsetningen om en vektet gjennomsnittlig kapitalkostnad (WACC) på 10%, tilfører prosjektet verdi.
Husk at IRR ikke er den faktiske dollarverdien til prosjektet, og det er grunnen til at vi brøt ut NPV-beregningen hver for seg. Husk også at IRR antar at vi stadig kan investere på nytt og motta en avkastning på 56, 77%, noe som er usannsynlig. Av denne grunn antok vi trinnvis avkastning med en risikofri rente på 2%, noe som ga oss en MIRR på 33%.
Hvorfor IRR er viktig
IRR hjelper ledere med å bestemme hvilke potensielle prosjekter som gir merverdi og som er verdt å gjennomføre. Fordelen med å uttrykke prosjektverdier som en hastighet er det klare hinderet det gir. Så lenge finansieringskostnadene er mindre enn potensiell avkastning, tilfører prosjektet verdi.
Ulempen med dette verktøyet er at IRR bare er så nøyaktig som av forutsetningene som driver det, og at en høyere rente ikke nødvendigvis betyr prosjektets høyeste verdi i dollar. Flere prosjekter kan ha samme IRR, men dramatisk forskjellig avkastning på grunn av tidspunktet for og størrelsen på kontantstrømmer, mengden gearing som er brukt, eller forskjeller i antakelser om avkastning. IRR-analyse forutsetter også en konstant reinvesteringsrate, som kan være høyere enn en konservativ reinvesteringsrate.
