Hva er netto nåverdi (NPV)?
Netto nåverdi (NPV) er forskjellen mellom nåverdien av kontantstrømmer og nåverdien av kontantstrømmer over en periode. NPV brukes i kapitalbudsjettering og investeringsplanlegging for å analysere lønnsomheten til en anslått investering eller prosjekt.
Følgende formel brukes til å beregne NPV:
NPV = t = 1∑n (1 + i) tRt hvor: Rt = Netto kontantinnstrømning i løpet av en enkelt periode ti = Diskonteringsrente eller avkastning som kan oppnås inalternativ investeringst = Antall tidsperioder
NPV = TVECF − TVICwhere: TVECF = Dagens verdi av forventede kontantstrømmerTVIC = Dagens verdi av investerte kontanter
En positiv netto nåverdi indikerer at forventet inntjening generert av et prosjekt eller investering - i nåværende dollar - overstiger forventede kostnader, også i nåværende dollar. Det antas at en investering med en positiv NPV vil være lønnsom, og en investering med en negativ NPV vil gi et nettotap. Dette konseptet er grunnlaget for Net Present Value Rule, som dikterer at bare investeringer med positive NPV-verdier bør vurderes.
Bortsett fra selve formelen, kan nåverdien beregnes ved bruk av tabeller, regneark, kalkulatorer eller Investopedias egen NPV-kalkulator.
Forstå netto nåverdi
Hvordan beregne netto nåverdi (NPV)
Penger i dag er mer verdt enn det samme beløpet i fremtiden på grunn av inflasjon og inntekter fra alternative investeringer som kan gjøres i løpet av mellomtiden. Med andre ord, en dollar tjent i fremtiden vil ikke være verdt så mye som en tjent i dag. Diskonteringsrenteelementet i NPV-formelen er en måte å gjøre rede for.
Anta for eksempel at en investor kan velge en betaling på $ 100 i dag eller om et år. En rasjonell investor ville ikke være villig til å utsette betaling. Men hva om en investor kunne velge å motta $ 100 i dag eller $ 105 i løpet av et år? Hvis betaleren var pålitelig, kan det hende at ekstra 5% er verdt å vente på, men bare hvis det ikke var noe annet, kunne investorene gjøre med $ 100 som ville tjent mer enn 5%.
En investor kan være villig til å vente et år på å tjene 5% ekstra, men det er kanskje ikke akseptabelt for alle investorer. I dette tilfellet er 5% diskonteringsrenten som vil variere avhengig av investor. Hvis en investor visste at de kunne tjene 8% på en relativt sikker investering i løpet av det neste året, ville de ikke være villige til å utsette betaling med 5%. I dette tilfellet er investorens diskonteringsrente 8%.
Et selskap kan bestemme diskonteringsrenten ved å bruke forventet avkastning fra andre prosjekter med et lignende nivå av risiko eller kostnadene for å låne penger som trengs for å finansiere prosjektet. For eksempel kan et selskap unngå et prosjekt som forventes å returnere 10% per år hvis det koster 12% å finansiere prosjektet eller et alternativt prosjekt forventes å returnere 14% per år.
Se for deg at et selskap kan investere i utstyr som vil koste $ 1.000.000 og forventes å generere $ 25.000 per måned i omsetning i fem år. Selskapet har den disponible kapitalen for utstyret og kan alternativt investere den i aksjemarkedet for en forventet avkastning på 8% per år. Lederne føler at å kjøpe utstyret eller investere i aksjemarkedet er lignende risikoer.
Trinn en: NPV for den første investeringen
Fordi utstyret er betalt for forhånd, er dette den første kontantstrømmen som er inkludert i beregningen. Det er ingen gått tid som må gjøres rede for, så dagens utstrømning på 1 000 000 dollar trenger ikke å bli diskontert.
Identifiser antall perioder (t)
Utstyret forventes å generere månedlig kontantstrøm og vare i fem år, noe som betyr at det vil være 60 kontantstrømmer og 60 perioder inkludert i beregningen.
Identifiser diskonteringsrenten (i)
Den alternative investeringen forventes å betale 8% per år. Men fordi utstyret genererer en månedlig strøm av kontantstrømmer, må den årlige diskonteringsrenten gjøres om til en periodisk eller månedlig rente. Ved bruk av følgende formel finner vi at den periodiske frekvensen er 0, 64%.
Periodisk rate = ((1 + 0, 08) 121) −1 = 0, 64%
Trinn to: NPV for fremtidige kontantstrømmer
Anta at de månedlige kontantstrømmene er opptjent på slutten av måneden, med den første betalingen som kommer nøyaktig en måned etter at utstyret er kjøpt. Dette er en fremtidig betaling, så den må justeres for tidsverdien på pengene. En investor kan enkelt utføre denne beregningen med et regneark eller en kalkulator. For å illustrere konseptet vises de fem første utbetalingene i tabellen nedenfor.
Den fullstendige beregningen av nåverdien tilsvarer nåverdien av alle 60 fremtidige kontantstrømmer minus investeringen 1 000 000 dollar. Beregningen kan være mer komplisert hvis utstyret forventes å ha noen verdi igjen ved slutten av levetiden, men i dette eksemplet antas det å være verdiløst.
NPV = - $ 1, 000, 000 + Σt = 160 (1 + 0, 0064) 6025, 00060
Denne formelen kan forenkles til følgende beregning:
NPV = - $ 1.000.000 + $ 1, 242, 322.82 = $ 242, 322.82
I dette tilfellet er NPV positiv; utstyret skal kjøpes. Hvis nåverdien av disse kontantstrømmene hadde vært negativ fordi diskonteringsrenten var større, eller netto kontantstrømmer var mindre, burde investeringen vært unngått.
Netto nåverdi ulemper og alternativer
Måling av en investerings lønnsomhet med NPV er avhengig av forutsetninger og estimater, slik at det kan være betydelig rom for feil. Estimerte faktorer inkluderer investeringskostnader, diskonteringsrente og anslått avkastning. Et prosjekt kan ofte kreve uforutsette utgifter for å komme seg fra bakken eller kan kreve ytterligere utgifter på slutten av prosjektet.
Tilbakebetalingstid, eller "tilbakebetaling metode", er et enklere alternativ til NPV. Tilbakebetalingsmetoden beregner hvor lang tid det vil ta før den opprinnelige investeringen skal tilbakebetales. En ulempe er at denne metoden ikke klarer å ta hensyn til tidsverdien på pengene. Av denne grunn har tilbakebetalingsperioder beregnet for lengre investeringer et større potensiale for unøyaktighet.
Dessuten er tilbakebetalingsperioden strengt begrenset til tiden som kreves for å tjene tilbake innledende investeringskostnader. Det er mulig at investeringens avkastning kan oppleve skarpe bevegelser. Sammenligninger som bruker tilbakebetalingsperioder gjør ikke rede for langsiktig lønnsomhet av alternative investeringer.
Netto nåverdi kontra intern avkastning
Intern avkastning (IRR) er veldig lik NPV bortsett fra at diskonteringsrenten er den satsen som reduserer NPV for en investering til null. Denne metoden brukes til å sammenligne prosjekter med forskjellige levetider eller mengden av nødvendig kapital.
For eksempel kan IRR brukes til å sammenligne den forventede lønnsomheten til et treårig prosjekt som krever en investering på $ 50.000, - med det fra et 10-årig prosjekt som krever en investering på $ 200.000. Selv om IRR er nyttig, anses den vanligvis som underordnet NPV fordi den gjør for mange antagelser om reinvesteringsrisiko og kapitalallokering.
Bunnlinjen
Netto nåverdi (NPV) er beregningen som brukes til å finne dagens verdi av en fremtidig betalingsstrøm. Den utgjør tidsverdien av penger og kan brukes til å sammenligne liknende investeringsalternativer. NPV er avhengig av en diskonteringsrente som kan avledes fra kostnaden for kapitalen som kreves for å foreta investeringen, og ethvert prosjekt eller investering med negativ NPV bør unngås. En viktig ulempe ved å bruke en NPV-analyse er at den gjør antagelser om fremtidige hendelser som kanskje ikke er pålitelige.
